Γιά μία μεγάλη κλάση παιγνίων δύο ατόμων δεν υπάρχει λόγος να γίνεται το παίγνιο.


Το θεώρημα minimax και η θεωρία των παιγνίων
Το θεώρημα minimax αναφέρει ότι για μία μεγάλη κλάση παιγνίων δύο ατόμων δεν υπάρχει λόγος να γίνεται το παίγνιο. Ο καθένας από τους δύο παίκτες μπορεί να θεωρήσει, για κάθε δυνατή στρατηγική του παιχνιδιού, την μεγίστη ζημιά που μπορεί να υποστεί ακολουθώντας αυτή την στρατηγική και ακολούθως να εκλέξει ως βέλτιστη στρατηγική εκείνη που του ελαχιστοποιεί την μέγιστη ζημία.
Εάν ένας παίκτης ακολουθήσει την διαδικασία αυτή, μπορεί να είναι στατιστικά βέβαιος ότι δεν θα χάσει περισσότερα από αυτή την τιμή που λέγεται τιμή minimax. Εφόσον (αναφέρει το θεώρημα minimax) η τιμή minimax ισούται με το αρνητικό της παρόμοια οριζόμενης τιμής, που ο αντίπαλος του μπορεί να εγγυηθεί για τον εαυτό του, το τελικό αποτέλεσμα προσδιορίζεται πλήρως από τους κανόνες του παιγνίου.
Η θεωρία των παιγνίων τώρα είναι ένας κλάδος των μαθηματικών, ο οποίος χρησιμοποιείται για την ανάλυση ανταγωνιστικών καταστάσεων που η έκβαση τους εξαρτάται όχι μόνο από τις επιλογές ενός ατόμου —ή και από την τύχη— αλλά και από τις επιλογές των άλλων ατόμων, ή παικτών.
Εφόσον η έκβαση ενός παιχνιδιού εξαρτάται από τις ενέργειες και τις αποφάσεις όλων των παικτών, καθένας από αυτούς προσπαθεί να προβλέψει τις επιλογές των υπολοίπων, με σκοπό να καθορίσει την δική του βέλτιστη επιλογή.
Το κυρίως αντικείμενο της θεωρίας παιγνίων είναι το πώς θα γίνουν αυτοί οι αλληλεξαρτώμενοι στρατηγικοί υπολογισμοί.
Η θεωρία παιγνίων υποδιαιρείται σε πολλούς μεγάλους τομείς. Οι σημαντικότεροι είναι:
• Δύο πρόσωπα εναντίον π προσώπων. Η θεωρία των δύο προσώπων ασχολείται με την βέλτιστη στρατηγική επιλογή δύο ατόμων, ενώ η θεωρία των π προσώπων (π>2) ενδιαφέρεται για τις συμμαχίες (ή συνασπισμούς) που θα μπορούσαν να κάνουν κάποιοι από αυτούς έτσι, ώστε τα μέλη της συμμαχίας να αποκομίσουν τα μέγιστα δυνατά κέρδη.
• Μηδενικό άθροισμα εναντίον μη μηδενικού αθροίσματος. Τα κέρδη κάθε παίκτη προστίθενται στο μηδέν (ή σε κάποιον άλλο σταθερό αριθμό) για κάθε έκβαση (γύρο) του παιχνιδιού. Αυτό συμβαίνει στα παιχνίδια μηδενικού αθροίσματος. Στα παιχνίδια μη μηδενικού αθροίσματος τα ποσά αθροίζονται σε κάθε έκβαση και, κατά συνέπεια, η αφετηρία δεν είναι κοινή για όλους τους παίκτες. Στα παιχνίδια μηδενικού αθροίσματος ό,τι ποσό κερδίζεται συνολικά τόσο ποσό χάνεται. Κατά συνέπεια το αλγεβρικό άθροισμα των ποσών είναι μηδέν. Αντίθετα, στα παιχνίδια μη μηδενικού αθροίσματος είναι δυνατόν σε κάποιο γύρο να χάσουν ή να κερδίσουν όλοι οι παίκτες (από το απόθεμα του παιχνιδιού).
• Συνεργασία εναντίον μη συνεργασίας. Ως παιχνίδια συνεργασίας χαρακτηρίζονται εκείνα, στα οποία οι παίκτες συνάπτουν συμβάσεις και θεσπίζουν κανονισμούς. Αντίθετα, στα παιχνίδια μη συνεργασίας, μπορεί να επιτρέπεται ή όχι η επικοινωνία μεταξύ των παικτών. Πάντως και στα παιχνίδια μη συνεργασίας αν αποφασιστεί κάποια συμφωνία, αυτή δεν πρέπει να παραβιαστεί με το αιτιολογικό ότι πρόκειται για παιχνίδι μη συνεργασίας. Κοινό γνώρισμα όλων των κλάδων της θεωρίας παιγνίων είναι η υπόθεση ότι οι παίκτες, μεταξύ πολλών κακών εκβάσεων, θα επιλέξουν την λιγότερο κακή.

Σχόλια